

multiscale autonomous surveys in support of SPURS

dave fratantoni

autonomous systems laboratory physical oceanography department woods hole oceanographic institution

surface salinity snapshot from HYCOM

surface salinity snapshot from HYCOM

surface salinity snapshot from HYCOM

objective:

to directly measure the detailed structure of upper-ocean salinity, its temporal evolution, and its relationship to larger-scale atmospheric and oceanic forcing.

contributions to SPURS:

- characterization of upper-ocean salinity on previously undersampled spatial and temporal scales
- direct measurement of time-dependent horizontal gradient terms to aid closure of local and regional hydrological budgets

questions:

- What is the character of the upper-ocean salinity field at the limits of our present observational capabilities?
- How does variability on these scales contribute to and/or reflect the processes responsible for surface salinity patterns, including the salinity maximum?
- To what extent is atmosphere-ocean interaction (and by extension, the hydrological cycle and the climate system) sensitive to the detailed structure of upper-ocean salinity and temperature?
- How can multiscale field observations best constrain, improve, and/or interpret numerical models and remote sensing tools?

surface forcing
$$Q_{0} - R_{S}|_{-h} = \int_{-h}^{0} \rho_{0} c_{p} \frac{\partial T}{\partial t} dz - F_{T}|_{-h} + \int_{-h}^{0} \rho_{0} c_{p} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}\right) dz$$

$$-(P - E) = \frac{1}{S_{0}} \int_{-h}^{0} \frac{\partial S}{\partial t} dz - \frac{F_{S}|_{-h}}{S_{0}} + \frac{1}{S_{0}} \int_{-h}^{0} \left(u \frac{\partial S}{\partial x} + v \frac{\partial S}{\partial y} + w \frac{\partial S}{\partial z}\right) dz,$$

slocum waveglider

slocum

waveglider

iver2/ecomapper

er

n=6-8

T=30 d

v=25 km/d

dx=1 km

dz=20 cm

n=2

T=0.25 d

v=150 km/d

dx=2 m

n=2

T=365 d

v = 40-50 km/d

dx=100 m

obsolete strawman

surface forcing
$$Q_{0} - R_{S}|_{-h} = \int_{-h}^{0} \rho_{0} c_{p} \frac{\partial T}{\partial t} dz - F_{T}|_{-h} + \int_{-h}^{0} \rho_{0} c_{p} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}\right) dz$$

$$-(P - E) = \frac{1}{S_{0}} \int_{-h}^{0} \frac{\partial S}{\partial t} dz - \frac{F_{S}|_{-h}}{S_{0}} + \frac{1}{S_{0}} \int_{-h}^{0} \left(u \frac{\partial S}{\partial x} + v \frac{\partial S}{\partial y} + w \frac{\partial S}{\partial z}\right) dz,$$

vertical limits?

surface forcing
$$Q_{0} - R_{S}|_{-h} = \int_{-h}^{0} \rho_{0} c_{p} \frac{\partial T}{\partial t} dz - F_{T}|_{-h} + \int_{-h}^{0} \rho_{0} c_{p} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}\right) dz$$

$$-(P - E) = \frac{1}{S_{0}} \int_{-h}^{0} \frac{\partial S}{\partial t} dz - \frac{F_{S}|_{-h}}{S_{0}} + \frac{1}{S_{0}} \int_{-h}^{0} \left(u \frac{\partial S}{\partial x} + v \frac{\partial S}{\partial y} + w \frac{\partial S}{\partial z}\right) dz,$$

vertical velocity?

vertical velocity?

